Name:

SM275 • Mathematical Methods for Economics

Quiz 8 – 6 November 2019

Instructions. You have 15 minutes to complete this quiz. You may use your calculator. You may <u>not</u> use any other materials (e.g., notes, homework, books).

Show all your work. To receive full credit, your solutions must be completely correct, sufficiently justified, and easy to follow.

Problem	Weight	Score
1	1	
2	1	
3	1	
4	1	
5	1	
Total		/ 50

For Problems 1-4, let

$$f(x, y, z) = xy + xz + 2yz + \frac{1}{x}$$

Problem 1. Find the gradient of f.

Problem 2. Find the Hessian of f.

Problem 3. $(-1, \frac{1}{2}, \frac{1}{2})$ is a critical point of *f*. Find the principal minors of *f* at $(-1, \frac{1}{2}, \frac{1}{2})$.

Problem 4. Classify the critical point $(-1, \frac{1}{2}, \frac{1}{2})$ as a local minimum, local maximum, or saddle point. Briefly explain why.

Problem 5. Suppose a company sells one product in two markets. Let

 Q_1 = number of units produced for market 1 Q_2 = num P_1 = unit price in market 1 P_2 = unit $R_1 = P_1Q_1$ = revenue from market 1 $R_2 = P_2Q_1$ C = cost of productionC

 Q_2 = number of units produced for market 2 P_2 = unit price in market 2 $R_2 = P_2Q_2$ = revenue from market 2

Assume $Q_1 = -2P_1 + 40$, $Q_2 = -3P_2 + 48$, $C = 10(Q_1 + Q_2)$.

Suppose the company decides to sell in both markets at the same time. Write the profit as a function of Q_1 and Q_2 , the number of units produced in markets 1 and 2. Do not find the maximum profit.